SEMESTER LEARNING PLAN # NUSA CENDANA UNIVERSITY FACULTY OF ANIMAL HUSBANDRY, MARINE AND FISHERIES AQUACULTURE STUDY PROGRAM DOCUMENT CODE | | | SEI | MESTER LEARNING PLAN (R | PS) | | | | | |-----------------------|---|---|--|--------------------------|----------------|------------------------------|-------------------------|--| | COURSES (M | IK) | CODE | THE MK CLUSTER | WEIGHT (credits) | | SEMESTE
R | Date of Preparation | | | Aquaponic Aquaculture | e Technology | PKPBDP12311 | Core of the study program | T=2 | P=1 | II | February – 2025 | | | AUTHORIZATION/VE | RIFICATION | RPS Developr | ment Lecturer | Course | Coordinator | Stu | dy Program Coordinator | | | | Prof. Dr. Yuliana Salosso, S.Pi.MP Prof | | | uliana Salosso,
Pi.MP | Prof. I | Dr. Yuliana Salosso, S.Pi,MP | | | | Learning Outcomes | | Study Program Charged to the | | 1 | | | | | | | PLO3 | Graduates must possess the alternative solutions when | | data, convey | information in | the field of a | quaculture, and provide | | | | PLO6 | Graduates should be able to | Graduates should be able to apply science and technology to enhance productivity in aquaculture | | | | | | | | PLO7 Course Learni CLO1 | | Graduates should be able to identify, analyze, evaluate and interpret problems in the field of aquaculture and provide guidal in choosing various alternative solutions based on science | ng Aquaponic Systems | • | | | | | | | CLO2 | Applying Aquaculture Techi | nology and Techniques in Ac | quaponics Sys | tems | | | | | | CLO3 | Evaluating and Designing A | | | | | | | | | Final Ability | of each learning stage (Sub-CL | .0) | | | | | | | | Sub-CLO1 | Understandi | ng the Basic Co | ncepts of Aqua | anonics | | | | | | |--|---|---|---|---|---|--|--|---|--|-------------------------| | | Sub-CLO2 | | | Design of Aqu | | nc | | | | | | | Sub-CLO3 | | | Aquaponics Sy | | 13 | | | | | | | Sub-CLO4 | | lying Integrated Fish and Plant Cultivation Techniques | | | | | | | | | | Sub-CLO5 | | tifying and Addressing Problems in Aquaponic Systems | | | | | | | | | | Sub-CLO6 | | | chnology in Aq | <u> </u> | | | | | | | | Sub-CLO7 | | • • • | ivation Practice | • | | p | | | | | | Sub-CLO8 | <u> </u> | | d Environmen | - | | • | | | | | | | Sub-CLO to CI | | | | | | | | | | | | | CLO 1 | | | CLO 2 | | CL | .0 3 | Rating
weight
(%) | | | | Sub-CLO 1 | Sub-CLO 2 | Sub-CLO 3 | Sub-CLO 4 | Sub-CLO 5 | Sub-CLO 6 | Sub-CLO 7 | Sub-CLO 8 | | | | PLO2 | ٧ | ٧ | | | | | | | 15 | | | PLO6 | | | ٧ | ٧ | ٧ | | | | 40 | | | PLO7 | | | | | | | | | 45 | | | Rating weight (%) | 5 | 5 | 5 | 5 | 5 | 15 | 10 | | 100 | | | Number of
Weeks | 1 | 1 | 2 | 1 | 1 | | | | | | Brief Description of MK | Technology a
discussing va
Systems, Wa
Technology, | and Technique
prious topics, inter Quality a | es in Aquapo
ncluding: Inti
nd Managem
System Prac | nics Systems
roduction to A
nent, Fish Far
cicum, Comm | as well as Ev
Aquaponics, I
ming in Aqu | aluating and
Types and De
aponics, Pla | Designing Solesign of Aquap
ant Cultivation | ponic Systems a
utions Based or
onic Systems, C
in Aquaponics
Problem Solvi | n Aquaponics S
components of A
s, Aquaponics S | Aquaponic
Supporting | | Study Materials:
Learning Materials | 2. Types 3. Comp 4. Water 5. Fish Fa 6. Plant 0 7. Aquap | uction to Aqua
and Design of
onents of Aqua
Quality and Its
arming in Aqua
Cultivation in A
ponics Support
ponics System F | Aquaponic Sys
ponic Systems
Management
ponics
quaponics
Technology | | | | | | | | | | 9. Common Problems in Aquaponics Systems | |------|--| | | 10. Problem-Solving Strategies (2 times) | | | 11. Economic Feasibility Analysis of Aquaponic Systems | | | 12. Environmental and Sustainability Aspects | | | | | Book | Main: | | | 1. Okomoda, V. T., Oladimeji, S. A., Solomon, S. G., Olufeagba, S. O., Ogah, S. I., & Ikhwanuddin, M. (2023). Aquaponics | | | production system: A review of historical perspective, opportunities, and challenges of its adoption. Food science & | | | nutrition, 11(3), 1157-1165. | | | 2. Colt, J., Schuur, A. M., Weaver, D., & Semmens, K. (2022). Engineering design of aquaponics systems. <i>Reviews in Fisheries</i> | | | Science & Aquaculture, 30(1), 33-80. | | | 3. Masabni, J., & Niu, G. (2022). Aquaponics. In <i>Plant factory basics, applications and advances</i> (pp. 167-180). Academic Press. | | | 4. Hao, Y., Ding, K., Xu, Y., Tang, Y., Liu, D., & Li, G. (2020). States, trends, and future of aquaponics | | | research. Sustainability, 12(18), 7783. | | | 5. Connell, S. (2020). Beginner's Guide to Aquaponics: Step-by-Step Systems for Plants and Fish. Sourcebooks, Inc | | | 6. Yang, T., & Kim, H. J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of | | | aquaponic systems. <i>Scientia Horticulturae</i> , 256, 108619. | | | 7. Yavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems: | | | its relation to water quality with an emphasis on feed and faeces—a review. <i>Water</i> , 9(1), 13. | | | its relation to water quality with an emphasis on reed and racces—a review. water, 3(1), 13. | | | Supportor | | | Supporter | | Required | Dasics of aqua | iculture | | | | | | |----------|--|---|--|---|----------------------|--|----------------| | Mg to- | Final ability of each stage of
learning (Sub-CLO) | Valuation | Valuation | | earning;
lethods; | Learning Materials | Rating Weights | | | | Indicator | Assessment Criteria | Student Ass
Estimate | • | | (%) | | (1) | (2) | (3) | (4) | Squirting (5) | Online
(6) | (7) | (8) | | 1 | Sub CLO 1 : Understanding the Basic Concepts of Aquaponics | 1.1 Precision explains the definition and history of aquaponics.1.2 Precision explains the concept of integration of aquaculture and hydroponics | Test Technique: - Quiz 1 : Essay Questions | • Lecture • Discussio n [PB: 1x(2x50")] | SIADIKNON
A | Introduction to Aquaponics Definition and history of aquaponics | 5 | | | | 1.3 Precision explains Comparison of aquaponics with conventional systems | Kriteria:
Pedoman penskoran | Task 1: Quiz | | Concept of integration of aquaculture and hydroponics Comparison of aquaponics with conventional systems | | |---|---|---|---|--|----------------|--|---| | 2 | Sub CLO 1 : Understanding the Basic Concepts of Aquaponics | 2.1 Accuracy explains Media-based system 2.2 Precision describes the Nutrient Film Technique (NFT. 2.3 Precision explains Deep Water Culture (DWC) 2.4 Precision explains the design of household and commercial scale systems | Test technique: • Quiz 2; Essay Questions Non-test techniques: • Drawing the design, each type and design of the aquaponic system Kriteria: Rubric | Lecture Discovery Learning Discussio n [PB: 1x(2x50")] Task 2: Drawing the design, each type and | | - Types and Design of Aquaponic Systems Media-based system Nutrient Film Technique (NFT) Deep Water Culture (DWC) Household and commercial scale system design | 5 | | 3 | Sub-CLO-2: Analyzing Components and Design of Aquaponic Systems | 3.1 Precision describes aquaponic components: Fish tanks, grow beds, pumps, biological and mechanical filters 3.2 Precision outlines Aerator components, plumbing system, and water quality sensors | Non-test techniques: • Making leafliet components of aquaponic systems Kriteria: | Lecture Discovery Learning Discussion n [PB: 1x(2x50")] Task 3: Make a | SIADIKNON
A | Components of Aquaponic Systems Fish tanks, grow beds, pumps, biological and mechanical filters | 5 | | | | | Headline Holistic | leafliet of the component s of the aquaponic system . [PT+KM1(1+1)x (2x60")] | | Aerators, plumbing systems, and water quality sensors | | |------|--|---|--|--|----------------|--|----| | 4 | Sub-CLO-3: Managing Water
Quality in Aquaponic Systems | 4.1 Precision management Important water quality parameters (pH, temperature, DO, ammonia, nitrites, nitrates) 4.2 Precision deciphers the nitrogen cycle in aquaponics 4.3 Precision in implementing water stability monitoring and maintenance techniques | Non-test techniques: • Create a paper Kriteria: Headline Holistic | Lecture Case Study Presentati on and Discussio n [PB: 1x(2x50")] Task 4: Prepare a paper on water quality manageme nt in aquaponic aquaculture [PT+KM1(1+1)x (2x60")] | SIADIKNO
NA | 1. Water Quality and Its Management Important parameters (pH, temperature, DO, ammonia, nitrites, nitrates) Nitrogen cycle in aquaponics Water Stability Monitoring and Maintenance Techniques | 5 | | 5, 6 | Sub-CLO-5: Applying Integrated
Fish and Plant Cultivation
Techniques | 5.1 Precision explains choosing fish species (catfish, tilapia, koi, etc.) 5.2 Accuracy determines stocking density, implementation of feeding, and fish health management | Non-test techniques: • Proktek Making aquaponic cultivation Test technique: • Quiz 3 | Lecture Case Study Presentatio n and Discussion | SIADIKNO
NA | Fish Farming in Aquaponics Selection of fish species (catfish, tilapia, koi, etc.) | 15 | | | | | Kriteria:
Headline Holistic | [PB: 1x(2x50")] Task 5: Doing fish farming in an aquaponic system [PT+KM1(1+1)x (2x60")] | | Stocking,
feeding, and
fish health
management | | |---|--|--|---|--|----------------|--|----| | 7 | Sub-CLO-5: Applying Integrated Fish and Plant Cultivation Techniques | 6.1 Precision in selecting Plants suitable for aquaponics (kale, lettuce, spinach, etc. 6.2 Precision in applying Planting techniques and nutrient management | Non-test techniques: Proktek Making aquaponic cultivation Test technique: Quiz 4 Kriteria: Headline Holistic | Lecture Case Study Presentatio n and Discussion [PB: 1x(2x50")] Task 6: Proktek Making aquaponic cultivation [PT+KM1(1+ 1)x(2x60")] | SIADIKNO
NA | 1. Plant Cultivation in Aquaponics Plants suitable for aquaponics (kale, lettuce, spinach, etc.) Planting techniques and nutrient management | 10 | | 8 | UTS: Mid-Semester Exam: Validate | the results of assessment, evaluation an | d improvement of the ne | xt learning proce | ess | | | | 9 | Sub-CLO-6: Integrating Appropriate Technologies in Aquaponic Aquaculture | 7.1. Precision integrates Automation and IoT systems (temperature, pH, humidity sensors 7.2. Precision Use of alternative energy (solar panels, gravity system) | Non-test techniques: Practice of implementing IOT Kriteria: Rubrik Deskrptif | Lecture Case
study Discussio
n [PB: 1x(2x50")] Task 7: | SIADIKNON
A | 1. Aquaponics Support Technology Automation and IoT systems (temperature, pH, humidity sensors) | 10 | | | | | | IoT Implementa tion Practices [PT+KM1(1+1)x (2x60")] | | Use of
alternative
energy (solar
panels, gravity
system) | | |-------|--|--|--|--|----------------|--|----| | 10,11 | Sub-CLO-6: Integrating Appropriate Technologies in Aquaponic Aquaculture | 8.1 Precision designing aquaponic mini systems 8.2 Installation and operation of the system 8.3 Accuracy in documenting and evaluating fish and plant growth | Non-test techniques: The practice of designing mini aquaponics cultivation Kriteria: Headline Holistic | • Lecture • Case study • Debate [PB: 1x(2x50")] Task 8: The practice of designing mini aquaponics cultivation [PT+KM1(1+1)x (2x60")] | | 1. Aquaponics Systems Practicum Aquaponics mini system design System installation and operation Documentation and evaluation of fish and plant growth | 15 | | 12 | Sub-CLO-7: Conducting Aquaponic
Cultivation Practices
Independently or in Groups | 9.1 Accuracy in analyzing technical problems (leaks, blockages) 9.2 Accuracy in analyzing biological problems (fish diseases, stunted plant growth) 9.3 Accuracy of Analysis of Nutritional Imbalance Problems | Non-test techniques: Ptraktek analyzes problems in acuponic systems Kriteria: Category Descriptive | Lecture Case
study Discussio
n [PB: 1x(2x50")] Task 9:
Ptraktek
analyzes
problems in
the
acuponic
system | SIADIKNO
NA | Common Problems in Aquaponics Systems Technical glitches (leaks, blockages) Biological problems (fish diseases, stunted plant growth) | 10 | | | | | | [PT+KM1(1+1)x
(2x60")] | | Nutritional imbalance | | |----|--|--|---|---|----------------|--|----| | 13 | Sub-CLO-7: Conducting Aquaponic Cultivation Practices Independently or in Groups | 10.1. Accuracy Identification of causes through water quality data and observation 10.2. Precision Design adjustment or system maintenance 10.3. Accuracy Simulation of system troubleshooting | Non-test techniques: Create a report on work results Kriteria: Category Descriptive | Lecture Case study Discussio n [PB: 1x(2x50")] Task 10: Collect field data (observatio ns, interviews) on strategic methods to overcome problems encountere d in aquaponics. [PT+KM1(1+1)x (2x60")] | SIADIKNO
NA | - Problem-Solving Strategies Oldentify causes through water quality data and observations Design adjustments or system maintenance System troubleshooting simulation | 10 | | 14 | Sub-CLO-8: Evaluating the Economic and Environmental Aspects of Aquaponics | 11.1. Accuracy Calculation of installation and operational costs 11.2. Accuracy of Crop yield projections and ROI 11.3. Precision Market analysis for aquaponics products | Non-test techniques: Create a report on work results Kriteria: Category Descriptive | Lecture Case
study Discussio
n [PB: 1x(2x50")] Task 10:
Conduct an
economic
analysis of | SIADIKNON
A | 1. Economic Feasibility Analysis of Aquaponic Systems O Calculation of installation and operational costs | 5 | | | | | | aquaponic
aquaponics.
[PT+KM1(1+1)x
(2x60")] | Crop yield projections and ROI Market analysis for aquaponics products | | |----|--|--|---|--|---|-----| | 15 | Sub-CLO-8: Evaluating the Economic and Environmental Aspects of Aquaponics | 12.1. Precision evaluates Zero water and waste use efficiency 12.2. Accuracy in analyzing the potential for urban farming system development and community empowerment | Non-test techniques: Create a report on work results Kriteria: Category Descriptive | • Lecture • Case study • Discussio n [PB: 1x(2x50")] Task 10: Conduct environmen tal analysis of the dam from aquaponics. [PT+KM1(1+1)x (2x60")] | 1. Environmental and Sustainability Aspects 2. Zero water and waste efficiency Potential for urban farming system development and community empowerment | 5 | | 16 | UAS: Final Semester Exam: Validat | ing final assessments and determining s | tudent graduation | • | • | 100 | ### FORMAT OF LESSON PLAN AND EVALUATION OF CASE-SOLVING COURSES IN MK "PARASITES AND FISH DISEASES" ### 1. LESSON PLAN FORMAT | NO | MEETING | MATERIAL | SUB MATERIAL | |----|---------|---------------------------------------|---| | 1 | 1 | Introduction to Aquaponics | Definition and history of aquaponics | | | | | Concept of integration of aquaculture and hydroponics | | | | | Comparison of aquaponics with conventional systems | | 2 | 2 | Types and Design of Aquaponic Systems | Media-based system | | | | | Nutrient Film Technique (NFT) | | | | | Deep Water Culture (DWC) | | | | | Household and commercial scale system design | | 3 | 3 | Components of Aquaponic Systems | Fish tanks, grow beds, pumps, biological and mechanical filters | | | | | Aerators, plumbing systems, and water quality sensors | | 4 | 4,5 | Water Quality and Its Management | Important parameters (pH, temperature, DO, ammonia, nitrites, | | | | | nitrates) | | | | | Nitrogen cycle in aquaponics | | | | | Water Stability Monitoring and Maintenance Techniques | | 5 | 6 | Fish Farming in Aquaponics | Selection of fish species (catfish, tilapia, koi, etc.) | | | | | Stocking, feeding, and fish health management | | 6 | 7 | Plant Cultivation in Aquaponics | Plants suitable for aquaponics (kale, lettuce, spinach, etc.) | | | | | Planting techniques and nutrient management | | 7 | 8 | U | TS: Semester Teangah Exam | | 8 | 9 | Aquaponics Support Technology | Automation and IoT systems (temperature, pH, humidity sensors) | | | - | | Use of alternative energy (solar panels, gravity system) | | 9 | 10, 11 | Aquaponics Systems Practicum | Aquaponics mini system design | | | • | | System installation and operation | | | | | Documentation and evaluation of fish and plant growth | | |----|----|--|--|--| | 10 | 12 | Common Problems in Aquaponics Systems | Technical glitches (leaks, blockages) Biological problems (fish diseases, stunted plant growth) Nutritional imbalance | | | 11 | 13 | Problem-Solving Strategies (2 times) | Identify causes through water quality data and observations Design adjustments or system maintenance System troubleshooting simulation | | | 12 | 14 | Economic Feasibility Analysis of Aquaponic Systems | Calculation of installation and operational costs Crop yield projections and ROI Market analysis for aquaponics products | | | 13 | 15 | Environmental and Sustainability Aspects | Zero water and waste efficiency Potential for urban farming system development and community empowerment | | | 14 | 16 | UAS: Final Semester Exam | | | ### **EVALUATION PLAN FORMAT** | NO | EVALUATION BASIS | WEIGHT | EVALUATION COMPONENTS | DESCRIPTION | |----|--------------------------|--------|------------------------------|--| | | | (%) | | | | 1 | Participatory activities | 25 | | | | 2 | Project results | 25 | | | | 3 | Cognitive/Knowledge | 10 | Assignment | Assignments for all topics | | | | 10 | Quiz | Quiz on 8 topics | | | | 15 | Mid-Semester Exam | Questions based on Sub-CLO indicators 1 - 6 | | | | 15 | Final Semester Exam | Questions based on Sub-CLO indicators 7 - 10 |