## **SEMESTER LEARNING PLAN**



# NUSA CENDANA UNIVERSITY FACULTY OF ANIMAL HUSBANDRY, MARINE AND FISHERIES AQUACULTURE STUDY PROGRAM

DOCUMENT CODE

|                       |                                         | SEI                                                   | MESTER LEARNING PLAN (R                                                                                                                                                                  | PS)                      |                |                              |                         |  |
|-----------------------|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|------------------------------|-------------------------|--|
| COURSES (M            | IK)                                     | CODE                                                  | THE MK CLUSTER                                                                                                                                                                           | WEIGHT (credits)         |                | SEMESTE<br>R                 | Date of Preparation     |  |
| Aquaponic Aquaculture | e Technology                            | PKPBDP12311                                           | Core of the study program                                                                                                                                                                | T=2                      | P=1            | II                           | February – 2025         |  |
| AUTHORIZATION/VE      | RIFICATION                              | RPS Developr                                          | ment Lecturer                                                                                                                                                                            | Course                   | Coordinator    | Stu                          | dy Program Coordinator  |  |
|                       | Prof. Dr. Yuliana Salosso, S.Pi.MP Prof |                                                       |                                                                                                                                                                                          | uliana Salosso,<br>Pi.MP | Prof. I        | Dr. Yuliana Salosso, S.Pi,MP |                         |  |
| Learning Outcomes     |                                         | Study Program Charged to the                          |                                                                                                                                                                                          | 1                        |                |                              |                         |  |
|                       | PLO3                                    | Graduates must possess the alternative solutions when |                                                                                                                                                                                          | data, convey             | information in | the field of a               | quaculture, and provide |  |
|                       | PLO6                                    | Graduates should be able to                           | Graduates should be able to apply science and technology to enhance productivity in aquaculture                                                                                          |                          |                |                              |                         |  |
|                       | PLO7  Course Learni CLO1                |                                                       | Graduates should be able to identify, analyze, evaluate and interpret problems in the field of aquaculture and provide guidal in choosing various alternative solutions based on science |                          |                |                              |                         |  |
|                       |                                         |                                                       |                                                                                                                                                                                          |                          |                |                              |                         |  |
|                       |                                         |                                                       | ng Aquaponic Systems                                                                                                                                                                     | •                        |                |                              |                         |  |
|                       | CLO2                                    | Applying Aquaculture Techi                            | nology and Techniques in Ac                                                                                                                                                              | quaponics Sys            | tems           |                              |                         |  |
|                       | CLO3                                    | Evaluating and Designing A                            |                                                                                                                                                                                          |                          |                |                              |                         |  |
|                       | Final Ability                           | of each learning stage (Sub-CL                        | .0)                                                                                                                                                                                      |                          |                |                              |                         |  |

|                                        | Sub-CLO1                                                    | Understandi                                                                                                                                     | ng the Basic Co                                                                   | ncepts of Aqua                                                  | anonics                                       |                                              |                                                |                                                                                         |                                                      |                         |
|----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------|
|                                        | Sub-CLO2                                                    |                                                                                                                                                 |                                                                                   | Design of Aqu                                                   |                                               | nc                                           |                                                |                                                                                         |                                                      |                         |
|                                        | Sub-CLO3                                                    |                                                                                                                                                 |                                                                                   | Aquaponics Sy                                                   |                                               | 13                                           |                                                |                                                                                         |                                                      |                         |
|                                        | Sub-CLO4                                                    |                                                                                                                                                 | lying Integrated Fish and Plant Cultivation Techniques                            |                                                                 |                                               |                                              |                                                |                                                                                         |                                                      |                         |
|                                        | Sub-CLO5                                                    |                                                                                                                                                 | tifying and Addressing Problems in Aquaponic Systems                              |                                                                 |                                               |                                              |                                                |                                                                                         |                                                      |                         |
|                                        | Sub-CLO6                                                    |                                                                                                                                                 |                                                                                   | chnology in Aq                                                  | <u> </u>                                      |                                              |                                                |                                                                                         |                                                      |                         |
|                                        | Sub-CLO7                                                    |                                                                                                                                                 | • • •                                                                             | ivation Practice                                                | •                                             |                                              | p                                              |                                                                                         |                                                      |                         |
|                                        | Sub-CLO8                                                    | <u> </u>                                                                                                                                        |                                                                                   | d Environmen                                                    | -                                             |                                              | •                                              |                                                                                         |                                                      |                         |
|                                        |                                                             | Sub-CLO to CI                                                                                                                                   |                                                                                   |                                                                 |                                               |                                              |                                                |                                                                                         |                                                      |                         |
|                                        |                                                             |                                                                                                                                                 | CLO 1                                                                             |                                                                 |                                               | CLO 2                                        |                                                | CL                                                                                      | .0 3                                                 | Rating<br>weight<br>(%) |
|                                        |                                                             | Sub-CLO 1                                                                                                                                       | Sub-CLO 2                                                                         | Sub-CLO 3                                                       | Sub-CLO 4                                     | Sub-CLO 5                                    | Sub-CLO 6                                      | Sub-CLO 7                                                                               | Sub-CLO 8                                            |                         |
|                                        | PLO2                                                        | ٧                                                                                                                                               | ٧                                                                                 |                                                                 |                                               |                                              |                                                |                                                                                         |                                                      | 15                      |
|                                        | PLO6                                                        |                                                                                                                                                 |                                                                                   | ٧                                                               | ٧                                             | ٧                                            |                                                |                                                                                         |                                                      | 40                      |
|                                        | PLO7                                                        |                                                                                                                                                 |                                                                                   |                                                                 |                                               |                                              |                                                |                                                                                         |                                                      | 45                      |
|                                        | Rating weight (%)                                           | 5                                                                                                                                               | 5                                                                                 | 5                                                               | 5                                             | 5                                            | 15                                             | 10                                                                                      |                                                      | 100                     |
|                                        | Number of<br>Weeks                                          | 1                                                                                                                                               | 1                                                                                 | 2                                                               | 1                                             | 1                                            |                                                |                                                                                         |                                                      |                         |
| Brief Description of MK                | Technology a<br>discussing va<br>Systems, Wa<br>Technology, | and Technique<br>prious topics, inter Quality a                                                                                                 | es in Aquapo<br>ncluding: Inti<br>nd Managem<br>System Prac                       | nics Systems<br>roduction to A<br>nent, Fish Far<br>cicum, Comm | as well as Ev<br>Aquaponics, I<br>ming in Aqu | aluating and<br>Types and De<br>aponics, Pla | Designing Solesign of Aquap<br>ant Cultivation | ponic Systems a<br>utions Based or<br>onic Systems, C<br>in Aquaponics<br>Problem Solvi | n Aquaponics S<br>components of A<br>s, Aquaponics S | Aquaponic<br>Supporting |
| Study Materials:<br>Learning Materials | 2. Types 3. Comp 4. Water 5. Fish Fa 6. Plant 0 7. Aquap    | uction to Aqua<br>and Design of<br>onents of Aqua<br>Quality and Its<br>arming in Aqua<br>Cultivation in A<br>ponics Support<br>ponics System F | Aquaponic Sys<br>ponic Systems<br>Management<br>ponics<br>quaponics<br>Technology |                                                                 |                                               |                                              |                                                |                                                                                         |                                                      |                         |

|      | 9. Common Problems in Aquaponics Systems                                                                                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------|
|      | 10. Problem-Solving Strategies (2 times)                                                                                               |
|      | 11. Economic Feasibility Analysis of Aquaponic Systems                                                                                 |
|      | 12. Environmental and Sustainability Aspects                                                                                           |
|      |                                                                                                                                        |
| Book | Main:                                                                                                                                  |
|      | 1. Okomoda, V. T., Oladimeji, S. A., Solomon, S. G., Olufeagba, S. O., Ogah, S. I., & Ikhwanuddin, M. (2023). Aquaponics               |
|      | production system: A review of historical perspective, opportunities, and challenges of its adoption. Food science &                   |
|      | nutrition, 11(3), 1157-1165.                                                                                                           |
|      | 2. Colt, J., Schuur, A. M., Weaver, D., & Semmens, K. (2022). Engineering design of aquaponics systems. <i>Reviews in Fisheries</i>    |
|      | Science & Aquaculture, 30(1), 33-80.                                                                                                   |
|      | 3. Masabni, J., & Niu, G. (2022). Aquaponics. In <i>Plant factory basics, applications and advances</i> (pp. 167-180). Academic Press. |
|      | 4. Hao, Y., Ding, K., Xu, Y., Tang, Y., Liu, D., & Li, G. (2020). States, trends, and future of aquaponics                             |
|      | research. Sustainability, 12(18), 7783.                                                                                                |
|      | 5. Connell, S. (2020). Beginner's Guide to Aquaponics: Step-by-Step Systems for Plants and Fish. Sourcebooks, Inc                      |
|      | 6. Yang, T., & Kim, H. J. (2019). Nutrient management regime affects water quality, crop growth, and nitrogen use efficiency of        |
|      | aquaponic systems. <i>Scientia Horticulturae</i> , 256, 108619.                                                                        |
|      | 7. Yavuzcan Yildiz, H., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems:   |
|      | its relation to water quality with an emphasis on feed and faeces—a review. <i>Water</i> , 9(1), 13.                                   |
|      | its relation to water quality with an emphasis on reed and racces—a review. water, 3(1), 13.                                           |
|      | Supportor                                                                                                                              |
|      | Supporter                                                                                                                              |

| Required | Dasics of aqua                                             | iculture                                                                                                                                                                    |                                            |                                         |                      |                                                                                                          |                |
|----------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|----------------|
| Mg to-   | Final ability of each stage of<br>learning (Sub-CLO)       | Valuation                                                                                                                                                                   | Valuation                                  |                                         | earning;<br>lethods; | Learning Materials                                                                                       | Rating Weights |
|          |                                                            | Indicator                                                                                                                                                                   | Assessment Criteria                        | Student Ass<br>Estimate                 | •                    |                                                                                                          | (%)            |
| (1)      | (2)                                                        | (3)                                                                                                                                                                         | (4)                                        | Squirting (5)                           | Online<br>(6)        | (7)                                                                                                      | (8)            |
| 1        | Sub CLO 1 : Understanding the Basic Concepts of Aquaponics | <ul><li>1.1 Precision explains the definition and history of aquaponics.</li><li>1.2 Precision explains the concept of integration of aquaculture and hydroponics</li></ul> | Test Technique: - Quiz 1 : Essay Questions | • Lecture • Discussio n [PB: 1x(2x50")] | SIADIKNON<br>A       | <ul> <li>Introduction to         Aquaponics         Definition and history of aquaponics     </li> </ul> | 5              |

|   |                                                                 | 1.3 Precision explains Comparison of aquaponics with conventional systems                                                                                                                                                                                                     | Kriteria:<br>Pedoman penskoran                                                                                                                        | Task 1: Quiz                                                                                                                                                                                                                                                         |                | <ul> <li>Concept of integration of aquaculture and hydroponics</li> <li>Comparison of aquaponics with conventional systems</li> </ul>                              |   |
|---|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | Sub CLO 1 : Understanding the Basic Concepts of Aquaponics      | <ul> <li>2.1 Accuracy explains Media-based system</li> <li>2.2 Precision describes the Nutrient Film Technique (NFT.</li> <li>2.3 Precision explains Deep Water Culture (DWC)</li> <li>2.4 Precision explains the design of household and commercial scale systems</li> </ul> | Test technique:  • Quiz 2; Essay Questions Non-test techniques:  • Drawing the design, each type and design of the aquaponic system  Kriteria: Rubric | <ul> <li>Lecture</li> <li>Discovery         Learning</li> <li>Discussio         n         [PB: 1x(2x50")]         Task 2:         <ul> <li>Drawing               the                   design,                   each type                   and</li></ul></li></ul> |                | - Types and Design of Aquaponic Systems  Media-based system  Nutrient Film Technique (NFT)  Deep Water Culture (DWC)  Household and commercial scale system design | 5 |
| 3 | Sub-CLO-2: Analyzing Components and Design of Aquaponic Systems | <ul> <li>3.1 Precision describes aquaponic components: Fish tanks, grow beds, pumps, biological and mechanical filters</li> <li>3.2 Precision outlines Aerator components, plumbing system, and water quality sensors</li> </ul>                                              | Non-test techniques:  • Making leafliet components of aquaponic systems  Kriteria:                                                                    | <ul> <li>Lecture</li> <li>Discovery</li> <li>Learning</li> <li>Discussion</li> <li>n</li> <li>[PB: 1x(2x50")]</li> <li>Task 3: Make a</li> </ul>                                                                                                                     | SIADIKNON<br>A | <ol> <li>Components of Aquaponic Systems</li> <li>Fish tanks, grow beds, pumps, biological and mechanical filters</li> </ol>                                       | 5 |

|      |                                                                            |                                                                                                                                                                                                                                                                                                   | Headline Holistic                                                                      | leafliet of the component s of the aquaponic system . [PT+KM1(1+1)x (2x60")]                                                                                           |                | <ul> <li>Aerators,         plumbing         systems, and         water quality         sensors</li> </ul>                                                                                      |    |
|------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4    | Sub-CLO-3: Managing Water<br>Quality in Aquaponic Systems                  | <ul> <li>4.1 Precision management Important water quality parameters (pH, temperature, DO, ammonia, nitrites, nitrates)</li> <li>4.2 Precision deciphers the nitrogen cycle in aquaponics</li> <li>4.3 Precision in implementing water stability monitoring and maintenance techniques</li> </ul> | Non-test techniques:  • Create a paper  Kriteria: Headline Holistic                    | Lecture Case Study Presentati on and Discussio n [PB: 1x(2x50")]  Task 4: Prepare a paper on water quality manageme nt in aquaponic aquaculture [PT+KM1(1+1)x (2x60")] | SIADIKNO<br>NA | 1. Water Quality and Its Management Important parameters (pH, temperature, DO, ammonia, nitrites, nitrates) Nitrogen cycle in aquaponics Water Stability Monitoring and Maintenance Techniques | 5  |
| 5, 6 | Sub-CLO-5: Applying Integrated<br>Fish and Plant Cultivation<br>Techniques | <ul> <li>5.1 Precision explains choosing fish species (catfish, tilapia, koi, etc.)</li> <li>5.2 Accuracy determines stocking density, implementation of feeding, and fish health management</li> </ul>                                                                                           | Non-test techniques:  • Proktek Making aquaponic cultivation Test technique:  • Quiz 3 | <ul> <li>Lecture</li> <li>Case Study</li> <li>Presentatio n and Discussion</li> </ul>                                                                                  | SIADIKNO<br>NA | <ul> <li>Fish Farming in Aquaponics</li> <li>Selection of fish species (catfish, tilapia, koi, etc.)</li> </ul>                                                                                | 15 |

|   |                                                                          |                                                                                                                                                                                              | Kriteria:<br>Headline Holistic                                                                                  | [PB: 1x(2x50")]  Task 5:  Doing fish farming in an aquaponic system [PT+KM1(1+1)x (2x60")]                                                                                                                                                                         |                | <ul> <li>Stocking,<br/>feeding, and<br/>fish health<br/>management</li> </ul>                                                                |    |
|---|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7 | Sub-CLO-5: Applying Integrated Fish and Plant Cultivation Techniques     | <ul> <li>6.1 Precision in selecting Plants suitable for aquaponics (kale, lettuce, spinach, etc.</li> <li>6.2 Precision in applying Planting techniques and nutrient management</li> </ul>   | Non-test techniques: Proktek Making aquaponic cultivation  Test technique:  Quiz 4  Kriteria: Headline Holistic | <ul> <li>Lecture</li> <li>Case         Study</li> <li>Presentatio         n and         Discussion         [PB: 1x(2x50")]</li> <li>Task 6:         Proktek         Making         aquaponic         cultivation         [PT+KM1(1+         1)x(2x60")]</li> </ul> | SIADIKNO<br>NA | 1. Plant Cultivation in Aquaponics Plants suitable for aquaponics (kale, lettuce, spinach, etc.) Planting techniques and nutrient management | 10 |
| 8 | UTS: Mid-Semester Exam: Validate                                         | the results of assessment, evaluation an                                                                                                                                                     | d improvement of the ne                                                                                         | xt learning proce                                                                                                                                                                                                                                                  | ess            |                                                                                                                                              |    |
| 9 | Sub-CLO-6: Integrating Appropriate Technologies in Aquaponic Aquaculture | <ul> <li>7.1. Precision integrates Automation and IoT systems (temperature, pH, humidity sensors</li> <li>7.2. Precision Use of alternative energy (solar panels, gravity system)</li> </ul> | Non-test techniques: Practice of implementing IOT  Kriteria: Rubrik Deskrptif                                   | <ul> <li>Lecture</li> <li>Case<br/>study</li> <li>Discussio<br/>n</li> <li>[PB: 1x(2x50")]</li> <li>Task 7:</li> </ul>                                                                                                                                             | SIADIKNON<br>A | 1. Aquaponics Support Technology Automation and IoT systems (temperature, pH, humidity sensors)                                              | 10 |

|       |                                                                                        |                                                                                                                                                                                                                                                      |                                                                                                          | IoT Implementa tion Practices [PT+KM1(1+1)x (2x60")]                                                                                                                                             |                | <ul> <li>Use of<br/>alternative<br/>energy (solar<br/>panels, gravity<br/>system)</li> </ul>                                                                                                                                                                                           |    |
|-------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 10,11 | Sub-CLO-6: Integrating Appropriate Technologies in Aquaponic Aquaculture               | 8.1 Precision designing aquaponic mini systems  8.2 Installation and operation of the system  8.3 Accuracy in documenting and evaluating fish and plant growth                                                                                       | Non-test techniques:  The practice of designing mini aquaponics cultivation  Kriteria: Headline Holistic | • Lecture • Case study • Debate [PB: 1x(2x50")]  Task 8: The practice of designing mini aquaponics cultivation  [PT+KM1(1+1)x (2x60")]                                                           |                | 1. Aquaponics Systems Practicum Aquaponics mini system design System installation and operation Documentation and evaluation of fish and plant growth                                                                                                                                  | 15 |
| 12    | Sub-CLO-7: Conducting Aquaponic<br>Cultivation Practices<br>Independently or in Groups | <ul> <li>9.1 Accuracy in analyzing technical problems (leaks, blockages)</li> <li>9.2 Accuracy in analyzing biological problems (fish diseases, stunted plant growth)</li> <li>9.3 Accuracy of Analysis of Nutritional Imbalance Problems</li> </ul> | Non-test techniques: Ptraktek analyzes problems in acuponic systems Kriteria: Category Descriptive       | <ul> <li>Lecture</li> <li>Case<br/>study</li> <li>Discussio<br/>n</li> <li>[PB: 1x(2x50")]</li> <li>Task 9:<br/>Ptraktek<br/>analyzes<br/>problems in<br/>the<br/>acuponic<br/>system</li> </ul> | SIADIKNO<br>NA | <ol> <li>Common         Problems in             Aquaponics             Systems         Technical             glitches (leaks,             blockages)         Biological             problems (fish             diseases,             stunted plant             growth)     </li> </ol> | 10 |

|    |                                                                                  |                                                                                                                                                                                                |                                                                                       | [PT+KM1(1+1)x<br>(2x60")]                                                                                                                                                                                                                                           |                | Nutritional imbalance                                                                                                                                                |    |
|----|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 13 | Sub-CLO-7: Conducting Aquaponic Cultivation Practices Independently or in Groups | 10.1. Accuracy Identification of causes through water quality data and observation 10.2. Precision Design adjustment or system maintenance 10.3. Accuracy Simulation of system troubleshooting | Non-test techniques:  Create a report on work results  Kriteria: Category Descriptive | Lecture     Case     study     Discussio     n [PB: 1x(2x50")] Task 10:     Collect field     data     (observatio     ns,     interviews)     on strategic     methods to     overcome     problems     encountere     d in     aquaponics. [PT+KM1(1+1)x (2x60")] | SIADIKNO<br>NA | - Problem-Solving Strategies Oldentify causes through water quality data and observations Design adjustments or system maintenance System troubleshooting simulation | 10 |
| 14 | Sub-CLO-8: Evaluating the Economic and Environmental Aspects of Aquaponics       | 11.1. Accuracy Calculation of installation and operational costs 11.2. Accuracy of Crop yield projections and ROI 11.3. Precision Market analysis for aquaponics products                      | Non-test techniques:  Create a report on work results  Kriteria: Category Descriptive | <ul> <li>Lecture</li> <li>Case<br/>study</li> <li>Discussio<br/>n</li> <li>[PB: 1x(2x50")]</li> <li>Task 10:<br/>Conduct an<br/>economic<br/>analysis of</li> </ul>                                                                                                 | SIADIKNON<br>A | 1. Economic Feasibility Analysis of Aquaponic Systems O Calculation of installation and operational costs                                                            | 5  |

|    |                                                                            |                                                                                                                                                                        |                                                                                       | aquaponic<br>aquaponics.<br>[PT+KM1(1+1)x<br>(2x60")]                                                                                            | <ul> <li>Crop yield         <ul> <li>projections and</li> <li>ROI</li> <li>Market analysis</li> <li>for aquaponics</li> <li>products</li> </ul> </li> </ul> |     |
|----|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 15 | Sub-CLO-8: Evaluating the Economic and Environmental Aspects of Aquaponics | 12.1. Precision evaluates Zero water and waste use efficiency 12.2. Accuracy in analyzing the potential for urban farming system development and community empowerment | Non-test techniques:  Create a report on work results  Kriteria: Category Descriptive | • Lecture • Case study • Discussio n [PB: 1x(2x50")] Task 10: Conduct environmen tal analysis of the dam from aquaponics. [PT+KM1(1+1)x (2x60")] | 1. Environmental and Sustainability Aspects  2. Zero water and waste efficiency Potential for urban farming system development and community empowerment    | 5   |
| 16 | UAS: Final Semester Exam: Validat                                          | ing final assessments and determining s                                                                                                                                | tudent graduation                                                                     | •                                                                                                                                                | •                                                                                                                                                           | 100 |

### FORMAT OF LESSON PLAN AND EVALUATION OF CASE-SOLVING COURSES IN MK "PARASITES AND FISH DISEASES"

### 1. LESSON PLAN FORMAT

| NO | MEETING | MATERIAL                              | SUB MATERIAL                                                    |
|----|---------|---------------------------------------|-----------------------------------------------------------------|
| 1  | 1       | Introduction to Aquaponics            | Definition and history of aquaponics                            |
|    |         |                                       | Concept of integration of aquaculture and hydroponics           |
|    |         |                                       | Comparison of aquaponics with conventional systems              |
| 2  | 2       | Types and Design of Aquaponic Systems | Media-based system                                              |
|    |         |                                       | Nutrient Film Technique (NFT)                                   |
|    |         |                                       | Deep Water Culture (DWC)                                        |
|    |         |                                       | Household and commercial scale system design                    |
| 3  | 3       | Components of Aquaponic Systems       | Fish tanks, grow beds, pumps, biological and mechanical filters |
|    |         |                                       | Aerators, plumbing systems, and water quality sensors           |
| 4  | 4,5     | Water Quality and Its Management      | Important parameters (pH, temperature, DO, ammonia, nitrites,   |
|    |         |                                       | nitrates)                                                       |
|    |         |                                       | Nitrogen cycle in aquaponics                                    |
|    |         |                                       | Water Stability Monitoring and Maintenance Techniques           |
| 5  | 6       | Fish Farming in Aquaponics            | Selection of fish species (catfish, tilapia, koi, etc.)         |
|    |         |                                       | Stocking, feeding, and fish health management                   |
| 6  | 7       | Plant Cultivation in Aquaponics       | Plants suitable for aquaponics (kale, lettuce, spinach, etc.)   |
|    |         |                                       | Planting techniques and nutrient management                     |
| 7  | 8       | U                                     | TS: Semester Teangah Exam                                       |
| 8  | 9       | Aquaponics Support Technology         | Automation and IoT systems (temperature, pH, humidity sensors)  |
|    | -       |                                       | Use of alternative energy (solar panels, gravity system)        |
| 9  | 10, 11  | Aquaponics Systems Practicum          | Aquaponics mini system design                                   |
|    | •       |                                       | System installation and operation                               |

|    |    |                                                    | Documentation and evaluation of fish and plant growth                                                                                  |  |
|----|----|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| 10 | 12 | Common Problems in Aquaponics Systems              | Technical glitches (leaks, blockages) Biological problems (fish diseases, stunted plant growth) Nutritional imbalance                  |  |
| 11 | 13 | Problem-Solving Strategies (2 times)               | Identify causes through water quality data and observations Design adjustments or system maintenance System troubleshooting simulation |  |
| 12 | 14 | Economic Feasibility Analysis of Aquaponic Systems | Calculation of installation and operational costs Crop yield projections and ROI Market analysis for aquaponics products               |  |
| 13 | 15 | Environmental and Sustainability Aspects           | Zero water and waste efficiency Potential for urban farming system development and community empowerment                               |  |
| 14 | 16 | UAS: Final Semester Exam                           |                                                                                                                                        |  |

### **EVALUATION PLAN FORMAT**

| NO | <b>EVALUATION BASIS</b>  | WEIGHT | <b>EVALUATION COMPONENTS</b> | DESCRIPTION                                  |
|----|--------------------------|--------|------------------------------|----------------------------------------------|
|    |                          | (%)    |                              |                                              |
| 1  | Participatory activities | 25     |                              |                                              |
| 2  | Project results          | 25     |                              |                                              |
| 3  | Cognitive/Knowledge      | 10     | Assignment                   | Assignments for all topics                   |
|    |                          | 10     | Quiz                         | Quiz on 8 topics                             |
|    |                          | 15     | Mid-Semester Exam            | Questions based on Sub-CLO indicators 1 - 6  |
|    |                          | 15     | Final Semester Exam          | Questions based on Sub-CLO indicators 7 - 10 |